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1. Definition of the problem,

There zre two general theories of the linear relaxation phenomena that
mzke it possible to describe the relaxation phenomera without getting involved
in the melecular mechanisms, One of them is the thermodynamic theory which
assumes the existence of internal transformations only, thout requiring
any more detailed specifications thereof, Their basis is the thermodynamics
of the irreversible processes; for that resson, it is able consistently to
take into consideration not only the various conditions under which a relaxa-
tion process can take place adiabatically or isothermically, with constant
prassure or constant volume, with coastant electiric fisld intensity or cone
stant electrical shift density, ete, -~ but also to establish connectiions be-
wsen the relaxation times or relaxation spectra that are valid for the
various conditions, The theory of the after-effect of the relaxation phe-
nomena is still more general and, thereby, at the same time more formal than
the thermodynamic theory; it is essentially based on two theorems: 1, The
effect cannot precede the cause, 2. The superposition principle applies to
several independent causes and their effects, This grsat generality of the
conditions makes it impossible any longer to arrive at conclusions regarding
the comnection of the relaxation processss that take their course under dif-

ferent conditions. Beyond this, its formalism comprises processes that are
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not contained any longer in the thermodynamic theory,

Besides this theory, we alsoc have & kinetic theory of the relaxation
phenoriena (Kronig (1)); but it is so closely related to the thermodynamic
theory that we shall not have to make any distinction between them, within
the framework of the following considerations,

It is the purpose of the following explanations to clarify the thermo-
dynamic theory of the relaxation phenomena for one internal mechanism as
well as for a finite and infinite number of such mechanisms, to indicate a
series of gensral laws, and to discuss the dynamic equations of state that
will coms into existence by the slimination of the internal parameters,
From this point, there is a direct bridge leading to the after-effect theory
of the relaxation phenomena, which also enables us to see precisely, where
the equivalence of the two theories ends., Starting from this point, we
shall be able to look for a way leading to a generalization of the thermo-
dynamics of irreversible processes that is equivalent to the formalism of
the theory of after-effects in a more comprehensive area, and that randers
it precisa,

By way of complementation, we shall point out an example of the di-
slectric relaxation and the connection betwsen the thermndynamic relaxstion
theory of a system having an infinite number of internal transformations and
its linearized basic kinetic equatien.

In all our considerations, we shall assume that the deviations from
the thermodynamic equilibrium will always be sufficiently small; that means,
on the cne hand, that the thermodynsmics of the irreversible processes are
applicable, and on the other hand, that the superposition principle is valid,
We shall then - as we already have done at the outset - speak of linear re-

laxation phenomena, Morsover, we shall consider here only homogenecus systems




and their reaction to cutside effects, but without any proncunced transport
phenomena, Even though the considerations and results will be presented in
the language of mechanical relaxation, they can nevertheless be applied ana-
logously to all other relaxation phenomena provided they have been translated
correctly.

2. Thermodynamic systems having one internal transformation.

We shall consider a system within which one internal transformation is
possible; this transformation may be, e.g., a chemical reaction in the trus
meaning of the term, a transition beitween various states of a molecule, or
an. internal rearrangement, The thermodyramic stazte of this system will then
be described, perhaps, by the indication of the tsmperature T, of the specific
volume and of an internal variable £, This variable may be, e,g., the vari-
able number of the reaction of the internal transformation or the concentra-
tion of a component taking part in the transformation or the internal tempera-
ture Ti' in the ususal sense, In the case of a thermodynamic equilibrium, §

depends on T and v; we shall then write that £ = E(T,v), When £ reprssents

i

£y

the internal iemperature of Ti’ then the condition of equilibrium will simply
Le Ti = T, It is possible also to choose other pairs of variables instead
of T and v; e,g., T, por s, v, or s, p, where s denotes the entropy and p
denotes the pressure,

The reaction velocity ¢ /dt may be considered -~ at least, in the case of
the small deviations from the egquilibrium, that we shall have ito consider
here - a function of the state prevailing at the time t; then, we shall be

able to write (2)

0,
7y

=e(T,0,8) 4 (Tho &), (1]
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A(T,v,E) is the affinity as understood in the msaning of de Donder, in the
state T, v, €, and as defined by Gibbs' egquation for the differential of the
specific energy, vie,

du=Tds— pde — Ad £, (2]
it is, therefore, the conjugated value for £, In the equilibrium, the af-
finity will disappear; according to [1], d€/dt will alsso disappear, at the
same time - of necessity, Otherwise, the transformation veloecity will be
determined by the coefficient €(T,v,f), Since we shall limit ourselves to
small deviations from the equilibrium, it will be sufficient, to substitute
the valus of the equilibrium, £(T,v) for & in §(T, v), 1. e., to consider e
solely as a function of T and v or, when we select other independent vari-
ables s, v, as a function of s and v, ete, In doing so, we shall neglect
the terms in [l] that are proportionate to Az.

Very small catalyzing or de-catalyzing additions to our system will
practically leave itsthermodynamic properties unaffected; but, they may have
a2 considerable effect on the transformation velocity, For that reason, thev
will be taken into account simply by assuming that € will depend also or
their quantity.

The velocity at which a disturbance of theeguilibrium dies down, is
given by [1]; it depends on the conditions of the relaxation process, When,
e,g., T and v are retained then it will follow from [1], by developing for

powers of € - £(T,v) due to A(T,v,E(T,v)) = O that there will be

¢ _. (), -5 @ [2]

dt

in the first spproximation. It follows therefrom, by integration, since

£(T,v) is constant that

EW=E(T0) +Ce” 10 L
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when

1 /68>
Tpy = — —— > .
! e(&g)rv Fe

£ is an integration constant, the value of which indicates the initial cevia-
tion from the equilibrium; Ty, is the relaxation time, when T and v are con-
stant,

On the other hand, when s and v are constant during the relaxation pro-

cess, then we shall find it helpful to select s and v as independent varisbles;

we shall then cbtain from El}, by aznalegy,
d£ ‘e 4 L= -
at = ezs), 5 Ese) LE

Now, £ (s,v) will be constant (but not §(T,v), since the temperature may change
under the condition of constant entropy which is present in this case), and

it follows, with an integration constant C, that

) =Elo,0) + 0o e, (7]
when now
1 7250 ra’l
Ty = — —— | =2 /1
e € aA)g'-p Lvd

will be the relaxation time when s and v are constant, The relation of these
tws relaxation times will not contain the value of s that determines the

velocity, and is therefore a purely thermodynamic value, The inequality (2)

Ty é TT() .

(9]
will follow from general thermodynamic considerations, The sign of eguality
will be valid only when (0&/dAd) .= (0§/04)r, , and thereby (8§/0T),, = O0; i.e.,
when the position of the egquilibrium does not depend on the temperature,

while the volume is being retained,




In an analogous manner, we shall define the relaxation times T;D, 72?
for the relaxation when s, p or T, are constant: we shall then obtzain the
inegqualities

Tsp S TPy STrps Tep STsp = Trp
: [x0]
which - just as [9] - are closely linked with the principle of le Chatelier-

Braun, Then and only then

a¢
Tsp = T when (G T)v 4 =0,
0 &
T = Tsp when (:-;)ﬁ 4 =0,
(G5
=i =0,
Tsp= 1Ty When ‘C «l/p,A
8
Tre= Tp when (6711‘) T. 4 =0

Tgp == T, =T, =T :
v TTe T tep = Tp when € 1s not dependent on T and v in the

state ¢f equilibrium,

We shall attempt, by using the case of [9], to render these inequalities
clearly evident, We shall consider & molacular gas with a translational and
rotational temperature of T. We shall assume that the occupation of the first
excited level of oscillation (which is the only one teing considered here) is
larger than it would be in accordsnce with the Boltzman facter for the tempera-
ture T, We shall select as the internal parameter £, and internal temperature
Ti > T, which is defined as the system temperature, at which the assumed cc-
cupation of the level of oscillation would be in a state of thermodynamic
equilibrium with translation and rotation. When T, v are constant, the re-
laxation process will require a cooling from the initial value Ti of the inter-
nal temperature down tc T, But, when we retain s and v, then T will increase
during the relaxation process (ftransmission of snergy from the degree of free-

dom of the oscillatisn into the degrees cf freedom of the translation and
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rotation): this means that the relaxation process signifies an adjustment from
the initial value of T to a higher terminal value, and a smaller decrsase of
the irnternsl temperature than when T, v are fixed, and that - accordingly =~

it will be "terminated" more rapidly.

3, The dynamic equation of siate,

While we have considered the Equation [l], up to this point, only for
those conditions, under which twe independent variables will be retained, we
shall now assume at random time dependence for two independent varisbles, but
with the restriction that no large deviations from a fixed state of reference

of To’ v, 5 with S5, = (Tc,vo) will occur, We chall use - besides

[FAL]
(f‘!l

equation of state

p=piT0,8) [11]
which we shall use also in the form of p = p(s, v, £) ete,, depending on our
requirements, Since we have assumed that two of the independent variables
are kmown, [1] and [ll] may be used to find the other values, viz, p, T, v, E,
When we eliminate £, a relatior betwsen p,T,v and their time derivations will
remain; we shall call it the dynamic equation of state in a differential form,

—y
§

In the environs of the state of reference T , v io (17 eand [117] wil2

07

read as follows when we neglect the higher terms of the developrment:

14 -s)= (ﬁ;) (T — Ty + kc‘j)m(vﬂm( ;f-)m(s—so), 2]
p—po=(2p), (T~ T+ (Z’)N(v —vo+ (2, G- (3]

when p_ = p(T . Vo io), A1l partial derivations will have to be made for
the state of reference, On the basis of simple transformations, the elimina-

— i will result in

(e
s
Q
3
w
Q
=N
o

. e Tm. D — e
P Po = Tv P = \5T,;z',A

r

[T — Tyt 150 7]+ \IjZA[L—-%-+TTpﬂ. 147

Here,’?’v appears as the new relaxation time; it is defined, in a manner

~3
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analogous to [5] and [8], by
(5]

and refers to the temperature relaxation when p, v are constant,

When we assume that the pressure in the equation of state {ll] is a2 func-
tion of s, v, then we shall find, in an analogous manner and in equivalence
with [14] that

, . [ep . (o ) .
p“”“**wP:WaLA(S”““*”v”‘*@9,J”—”0ffme [16]

Depending on the conditions present, [14] or [16] may be convenient, For
adiabatic conditions of s = Sor 5 =10 [15] will be recduced to the well~known
acoustical equation of state,

When the changes of state are taking place very slowly, then the time
derivations of [14] and [16] may be disregarded, and we shall then come back
to the static equation of state, When the changes of state are taking place
very rapidly, then we shall be able to disregard - on the other hand -

P =P T To(or S - so) and v — v _; the integration for the time w111

then result - when we take [ 5], L8] and [16] into account - in

[Ep L {epy

p—m=@ﬁN@—Twr

v V)
l\(iT/ T,;‘ ( ‘o)

and in a corresponding equation with s or s, in the place of T or To. This
relation will have, once more, the form of a static equation of state, but
now for the case of a constant 5, This may be seen directly, since the trans-
formation can no lo:rger follow when the changes of state are sufficiently
rapid, i.e., £ will then remain constant,

The special case of T, = T&p (2nd, anszlogously, the special case of
T\sv = 1;p) is noteworthy, Irn that case - provided we disregard a trivial

exception (viz,, when in the environs of the state of reference s depends




solely on T, p depends sclely on v, and A depends solely on 5) we shall find

that Tfp =

result of

f;v, and we shall then be sble to integrate 14 directly, with the

iep) e
P T}v,A(T* Tyl = \1?

-t ,
pP—po=de Te | ]
’ e OvJT, A

(v — ).

This is exactly the static equation of state p = p(T,v) when we disregard
a term that decreases exponentially, and the coefficient A of which is, in
any case, equal to zero when the prescribed change of state T(t), v{(t) starts
from a state of equilibrium, In that case, the internal transformation will
not come to the fore in the relation between p, T, and v, Such a systenm,
that will, therefore, not present any relexation of the pressure in the case
of isothermic changes of state, when the volume 1s modified, but it may pos-
sess such & relaxation under adizbatic conditions, and vice versa: for, the
cordition of‘T&v ='T§p which is necessary to that end, generally does not en-
tail the condition that ?;v :'T;p, For that resson, an internal transforma-
tion may or may rot manifest itself by a relaxation between p and v, depending
on the conditions that are present,

An example is the aforementioned relaxation of the heat of oseillation
in gases, which is based on the equilibrium adjustment of the level of os-
cillation of the molecules, Since the mel number remains preserved during
this process, the equation of state will read p v =n R T (n = total mol
mumber in gram); accordingly, it does not contain the numbers of electrons
occupying the shell, i,e., the internal variable, For that reason, the pro-
duct p v will remain constant in the case of isothermic changes, while the
dynamic equation of state will be reduced - when T is constant - to the
static ore, despite the possibility of an occurrence of internal transforma-

tions. This will apply even when we shall have to take into consideration



not only an internal transformation but &1l transitions between the levels of
rotation and oscillation of the molecules. But, in the case of adiabatic
changes of state, the equation of state is a truly dynamic one, This follows
not only from the thermodynamics of such a system but also from the observation
of the absorption and dispersion of sound waves,

Now we shall compare the differential form of the dynamic equation of
state [14] or [16] with an integral form, which should be preferred, particu-
larly, in the case of complicated systems, and which renders directly evident
the connection of the thermodynamic theory with the theory of the after-effects
of the relaxation phenomena,

We shall simplify our manner of rotation to some extent, by designating
the deviations from the state of reference by Y=V - Vo S': P = P,

S =5 = So TzT o= To‘

It will then follow from [16] by integration of this differential equa-

tion in p, following some simple transformation, that

pity=4A e e + (?;)v 5' s (t) + <?;)R vl — (l— _1 )(22)1 ; /mg {t — u) e “Pso du

Tee T po/
. 0 (17]
.[5u—un”’w@

(1 1/
Top T«”\C’/‘l'(:t
kst >]7\ /»3

When we conceive of [16] as a differential equatioﬁ)in v, we shall find ana-
logously, by integration, that

o - Cfewy . fov 1 1)
v(t):Bc”sP-‘— = st‘—«"——) t) + ——
‘\.68/;,,5 ) - \‘ép,a,sp” ' (rpv rs,,)

1 1\/e n
[ cu P ~u't
+ <Tw T_sp) (6' p) . ef? (t —uye " "ep du.
0

Consequently, the instantaneous value of p (or of v) consists of a part

cv m_ ~uir,
(73>p,;0f”‘”““ RS )

that has been determined by the instantaneous values of v and s (or p and s)
and of another part into which all earlier values of vand s (or of p and s)
will go, with exponentially decreasing weights, This means that 2ll earlier
values of the two other variables present their after-effects in the in-

stantanecus value of p (or of ¥v). The term of the sum having the ccefficient




A or B may be omitted, When we follow the system by starting from & state

of equilibrium (v =0, § =§_ and p =0 for £ < 0), then we shall find that

A =B = 0; on the other hand, when the initial state is no®t a state of equilibe-
rium, then it will not be necessary for 4 and B to disappear, but the term
having the factor A or B will become negligibly smasll, after the lapse of a
time of >> ., sp* and we shall always have to wait that long when we want
to carry ocut meaningful measurements on the system,

The functions

ad 4 as, 5 q as 5
e D ‘ A . Faanl
T AR LY CCR PR (19]
and
. 1 1Y —u/r. /1 1 .
iy ou) = (‘ — e PSP s oty = DAy T W Ty
sy Tapr) A2 (1) \rm. T, p’r [203

are designated as after-effect functions of the pressure or volume in the case
of changes of the volume and the entropy, or of the pressure and the sntrophy.
Analogous results will be obtained from [14].
4  Thermcdynamic systems with a finite number of internal transformations.
We shall now consider z syztsm with a2 finite mumber of internal 4rans-
formations, We shall have them described by running reaction variables or by
independent concentrations or by internal temperatures that have been defined
in a suitable manner, or by other variables %l, €Eos veus 5 Let affinities
of Ay, &,, ..., A, that depend on s, v and the §i's be assigned to them, on
the basis of the Gibbs's relation of du = Tds — pdy — > 4,q:, These af-
i=1

finities will disappear in the state of eguilibrium, Then

n
i\ : Fooe
AL, . (=19 ) e
& o dp (i =1,2,...,n) L“Z,l
F=1

will be valid for ths resciion velocities in the case of small deviations

* There is no Equation {21] in the German text, - Translator.

11
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from the thermodynamic equilibrium, in accordance with the thermodynamies of
the irreversiblie processes, In this equation, too, the iik*s may be cone

sidered to depend selely on the data of a refsrence state To’ v_, near which

o’
the system will be assumed to be loccated. The reciprocity relations eof
Onsager, viz,,

eix =& (i, k=12, .., n) [23]
will apply to them,

We shall now limit ourselves, inasmuch &s nothing else will be stated

expressly, to adiabatic changes of state, for which we shall be able to write
s=const=s_, within the same approximation within which (22} is valid, Then,

there will be:

e, ¢ cA .
BN e (S8 8- w0 Y (S ‘)§5<v — o (= 1,2 ). [
pra— V& i P ’ A

It will now be convenlient and possible to introduce n linearly independent

linear combinations of the £, 's and assigned affinities, in such a way that -

1
(84 ,/2&), Wwill be transformed into the unit tensor while gik will become

diagonal (2), To this end, we shall have to suppose solely that U(so,vo,él)

will have an absolute minimum for % and that all reactions will

17 2500

actually be completed,
Due to this transformation, the square form of the internal energy, in

the case of constant s =5, v = Vo for the new internal variables will be

°'

equal to one half of the sum of the squares of the new affinities, and the
square form of the entropy generation will be reduced to a sum of the squares
of the new affinities having positive coefficients, We shall now assume,

here and in the following, that our 7,'s and A;'s already have ithls property;

i

then we shall have, in consequence thereof, in the case of constant s = Sot

V=V, - of course, near the state of equilibrium only -

12




This simulisnecus iransformation of two squars forms on primary aXes, will
remind us of the corresponding transformation of the kinetic and potential
energies of mechanical systems in the environs of a state of equilibrium, that
leads directly to the normal oscillations and to their eigen-frequencies, But,
the normal coordinates freguently do not have any importance of their own, on
a mechanical system; rather, they are generally connected, in a quite compli-
cated manner, with simple geometric data of the system, This applies alto=
gether analogously to the internal "normal" varisbles of thermodynamic sysiems
with relaxation, We should designate as simple internal variables those vari-
ables thet are assigned to individuzl molecular mechanisms, Then, the normal
variables will correspond to the usually rather complicated combinations of
the individual mechanisms and each measured relaxation time will always be
assigned to a normal variable and, thereby, gererally not to one single mole~
cule mechanism but to a certain combination of all mechanisms, The fact that
the normel variables are generally differant ones in the case of constant s,v
than in that of constant s, p or T, v or T, p represents an additional com-
plication,

On the basis of our assumption that the §i's are already normal vari-
ables, we shall arrive at the conclusion that, when

1 (i >0,8=1for i = k6 =0 for i+ k)
Ty

Eir =

dE; 1. £, _;,,l,, (?‘_4) —p)-
#Z—‘a(si_sto) T 7: aUS.s(D D) [253

The totality of the T;’s is the relaxation cpectrum (= totality of the
relaxation times, for constant s's and v's as we can ses immadiately by the

integration of [25] with VEY,, We shell new be able to sliminate the

17
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§i -— giO from [253 and from the sgquation of state as developed around the

state of reference

S =84, T =1 £ = Eio &i (Soy To)y

i)

DA © - Cmr ™
(5), G [267]
s, v

o 5{/ -

M=

6p\ .
P Pu= <:"’)s‘ 5(1‘—— To) +

:

]
-

and the dynamic equation of state as written formally, visz,

PmPe= {(2_2)8. § - Z (:‘;‘)s. v <%%) 8,4 ﬁz‘b} (o= va) [27]

i=1 ’

|

will come into existence,

U designates the differential operator d/dt, The real form will result
from this formal version by means of miltiplying zway the denominators
1+ TD. Consequently, [27] ties together the p — Py» V = Vo and the time
derivations of these variables up to the r-th one, provided that the sum con-
tained in [2?] contains - possibly, by means of a summing up - exactly r terms
with various‘T;'s.

Instead of [27], we shall write briefly

n
o

op) [ 7 ) 3
Pl 1= i<, [25]

1=1

when
= ehplohs L29]

On the basis of the thermodynamic stability conditions, we shall arrive

at the conclusion that

0 <o and Tsp< 1. (0]

=1
The relaxation times T& and the values of the coefficients 61 evidently do
not depend on our special choice of the internal varislles, but the special

>
L4

representation [ 29] of ths ﬁi 's does, indeed,

14




In an znalogous manner, we shall obtain

k3
vy 10 XY B8 \
v, = g /wap—m; Eﬁ

Cple £ ;1—;0"

Y

L.

i=1

with non-negative ﬁaz’s, on the basis of the selection of p and gi as inde-~
pendent variables. The o 's are the adiabatic relaxation times in the case
of constant pressure,

When all the ?;’s are different from one another, and when all the
6i2's are larger than 0, then the Ui's will also differ from one another, and
all the §iz's will be larger than zero, and when all the’?i's and the cy's
have been arranged according tc their size, then

T < 0,< <0, < o< T, < Gy {32]

will be wvalid,

The relaxation times T&, in the case of constant s, v, will therefore
be separzted from the relaxation times Ty in the case of constant s, p, in
such a sense that the largest relaxation time'?; of the first spectrum will
be smaller than the largest one Tps of the second spectrum, To describe these
conditions, we shall write briefly that

Sp (5.0) % Sp (5,0) L32]
In an analogous manner, we shall be able to obtain the relations of

Sp(T,p) > Sp (T}, Sp (T,v) % 8p (s,2),
Sp (T,p) % Sp(s.p). [3n]

for the relaxation times in the case of other varisbles that are maintained
constant, In [3&], we have assumed that two relzxation spectra, that are
conrnected by such a relation, do not have any multiple relaxation times, and
thet 21l the %,'s and & 's, and all the values that correspond to them, in

sach case, in other specira, differ fron zero,

15




We shall now return once more to [28] and [31}. In the general case,
neither all the 7. 's will have to differ from one another, nor will 21l the
gi's have to differ from zero. DBut, then, it will always follow, from [28]

and [313, by means of suitable summing-up, that

-
cpy N 0T i
P N

—

. | [ el
o T L35

»
s

5 .
possibly with a different numbering of the 7;'s and <y's, and there will be
r= o, 6 % 0, 5, % 0. Under certazin circumstences, the sum in [35], end there-
by also the sum in [ 36 may be done away with, altogether, The T;'s or 9,'s
(1 =1, 2, ..., r) are the relaxation times which show “‘heir effects in the
thermodynamic equation of state., We call them the effective relaxation times,
and we designate their totslity as the effective relaxation spectrum Spe
(s, v) or Sp_ (s,p), when s,v or s,p are constant. When they are appropriate-
ly rumbered, the equation

<O << 6, < e < T, << Gy [37:]
will apply to them, also, {3?3 folliows directly from solving [35} for v - v,
and comparing it with [36].

Analogous relations and statements will result when we keep the tempera-
ture constant, instead of the entropy. But in this case, the mumber of the
effective relaxation times will not have to be equal to r, In the afore-
mentioned example of the oscillatior and rotation relaxation, the number of
the isothermiec effective relaxatiorn times will be equal t¢ zero, even when
we consider 211 possibilities of 4ransition, while the rumber of the adiabatic

effective relaxation times will alweys 2iffsr from zero,

16




The integral form of (p — P, = ;} V=V, — ¥) follows from the differ-

ential form EBE] or [36} of the dynamic esguation of state, by mezns of the

0,

identity that is valid for = 0, viz

L

. . ) F —urdu
xup=u7rph/xu—un“f_
: T [38]
It is:
G A = T
mhzh) E(Q_/;«, (Ywizwkﬁ 1
\Cvfg 21 vt —u) — € ild i
Ve, & / L; ; } u‘: [39]
i==1
1= L ;o /5319-'2 .t
RERTTAI "ff”’"uu e
o = [40]

In these equations, the solutions of the homegereous eguaticon

e Dy 1 +1,D0)p{t) =0 OF
I+ao,D)--(1+0,D T() =0.

have been omitted, for the reasons given above, For isothermic conditions,
equations that are analogous to [39] and [40] will result,
In this way, we have obtained the formulation of the theory of afier-

effects; the adiabatlc after-effect functions are:

: r

g s2 : ” ,

6 —wfry O —ule;

al{u)= N\ -¢ ey gu) = \ —e T [}f
_— T —_—G
L=l f=1

The oi‘s,-Ji's zre determined unequivoecally by the T;'s, bi’s. and vice versa,
We note expressly that several elementary relaxation processes (several

molecular mechanisms) with equal relaxation times may be summarized in one

effective relaxation process of the after-effect theory, but that - on the

other hand - one elementary relaxation rrocess (one molecular mechanism)

will not necessarily have to btecome manifest in one effective relazxation pro-

cess, and in additior, that one effective relaxatior “ime may split under

isothermie conditions into several effective relaxation times under adiabatic
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conditions, or that it may not manifest itself at 2ll, and vice verse,

All the considerations presented up to this point, and also many of
the following ones can be translated almost literally for application to the
case of di-electric relaxation; it will be necessary only to replace p — Py
by the electric field intensity &, and v = v, by the electric displacement
density D in order to obtain the description of the di-electric relaxation
phenomena by means of the dynamic equation of state in its differential form
{the dynamic enlargement of the static squation T = e Y, or by ihe after-
effect functions,

5, Relaxation specira in svstems havinc an infinite mimber of internal

transformations.

We shall now attempt to transfer the results of the preceding Section to
thermodynamic systems having ar infinite rumber of internal variables éi' It
will be shown by an example in Section 7 that there are systems that may be
conceived in this mamner., In Section 8, we shall talk, by way of intimation,
about the question as to the extent to which such systems may still be desig-~
nated as thermodynamic systems,

For the sake of simpliciiy, we shall assume that the internal variables
€4 form a discrete totality., Then, we shall immediately be able to take
over all the results of the preceding Section inasmich as no use is being
made by them of the existence of normal variables, That applies directly
only to equations [22] to [247], in which i =1, 2, ..., while the sums extend
from k =1 to ®, DBut, a more precise mathematical analysis, e.g., by means
of the theory of infinite matrices or by the methods of the theory of in-
tegral equations, will show that, in addition, all results of the preceding

Section, if they are interpreted correctly (which is indeed, obvious), will
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remain essentlally valid, inasmich as they do not contain the rnormal variables
. ™. . Map™ e ry - .

in an explicit form, These are equstions (28 and [ 30! to L@l]. It will have

to be ¥spt in mind, however, that in the case of protlems involving an in-

finite number of itransformations, the relaxation spectra will not have to be

discrete any longer but may be continuous or may centain contimous parts,

In that case, [39), [40], and [41] will be repiaced by

p&):=@¢Lg{ﬁuy—j2(t~4da(u)mJ, {u2]

0 4

P x
fevy L

e N LU P E P (127

o i

O
The after-effect funclions can now be written, generslly, &s Stieltjes~in-

tegrals with non-decreasing (ef, [30]) functions $(1) and ¥{(3):
a (u) =~‘"0je*iu~ d @ (2), 3 (u) :fe»zudv (7) (= o). [’41}]

¢(1) and ¥(}) characterize the effective relaxation spectra in the case of
constant s,v or s,p. Thelr points of discontinuity correspond to discretle
relaxation times 1/ while intervals of steady increazse correspend to con-
tirmous parts of the relaxation spectrum, The after-effect functions are
totally monotonous in 0 $u< =@, i.e,, they can be differentiated there at
will, and their n-th differential quotient {n =0, 1, 2, ,..), differs from
zerc and has the sign of (— 1)°.

There exists a simple connection between the two Spectra,¢(k) and
v(3). It may be obtained either by way of the Laplace transformation of
equations [ 42 and [543 combined with the epplication of the folding theorem,
or mere directly, by presupposing that v(%) and thereby also p(t), is pro-
poriionate to e:j';jt with any {(even & complex) w, by inseriing this inte (k2]

and [437, as well as by entering ®(u) and B(u) from [b&4], and by integrating

-t
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for u, The result wiil be

> (23] o ¥ A
PR S

(Le

oo 0

This equation enables us to calculate, by a well-known method, {()), provided
that o(\) is known, and vice versa (¢f., e.g., (3), (&),

When the effective relaxation spectrum Spe(s,v) is discrete, then ¥(\)
will be constant, except for the points of discontimuity; this will then
apply also to 4(\) and Sp_(s,p) will also be discrete. The analogon of [37],
viz,, ]

Epe {5, 9 2 Sp, (s, 0). -
L&6
will then follow from [45]. It follows likewise that: VWhen the s¢, v-spec-
trum alse contains contimuous parts, then the s¥, p-spectrum will contain
continuous parts within the same areas, This statement is almost self-evi-
dent, when we conceive of the contimuious system as a border-line case of a
discrete spectrum with relaxation times that lie very closely together; for
in that case, there will lie - according to & theorem of the preceding Sec-
ion - between every two rslaxation times of Spe(s,v) a relaxation time of
Spe(s,p} and vice versa, But - and this 1s remarksable, indeed - that relaxa-
tion time of Spe(s,v) which lies outside Spe(s,p) does not, by any means,
close off the contiruous spectrum but is evident, outside that spectrum, as
a discrete or isolated relaxation time,

We shall show this by an example, a contimious spectrum with constant |
occupation, Let us assume that 9{(A) = 0 for O Sh < s, o()) = Q(‘m?‘-— a) ‘
that is for 2 $2 X b and that o(A) = q(b — 2) for » > b, Then, we chall

have, when iw = - 2
- b

de@) [ 9 45 -t —?
f,:; - f A — zd" =17 Ina —z [’47:}

0 a
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and according to [45]

rng’

The integral [47] will be unequivocal and finite everywhere, provided
we exclude a branch line along the continuous spectrum a S 2 = b from the
complex z-plane, The right side of [487] will also be unequivocel, provided
we exclude a branch line 2 Sz £b, but it will be finite only with the ex-

cepiion of the pole z, for which

or LT - ‘ ; . L&Q_!

will apply. It lies outside the interval a £z 3 b, To it, a discontinuity

of ¥(A) in the point 2, and of the value of

b
Iy, —_ o By}l e =
0 < 1={(Bn-2 =L — 8118)] p

[50]

(p—qib

T R
1.1 : (L L
and an isolated relaxation time of 7 > 2 outside the interval of (b a)

°
will correspond,

Otherwise, ©(») has growth points only within the interval of a £2

WA

b.
They may be found by assuming on both the right and left sides of [%3 that
z = X + iy and by performing the passage to the 1imit ¥ - 0, It will then
follow that

dy (%) = S di,

R
22 1] DA
At ,Ll : qln)'_‘”j Esl]

Otherwise, i.e., for 0 LA < 2,2, <A~ 2, b< A<=, p(Z) will be constant in
each case,

L <<l (with-

We shall summarize: The continuous spectrum Spe(s,v) in, i

out any isolated outside relaxation time) corresponds to a contimious specirun

Al




Spe(s,p} witain the same interval, with an additional isolated relaxation time
above the interval.

6. The general linear theory of afiter-effects,

The thermodynamic theory of the relaxation phenomena led us, in the gen-
eral case, to the dynamic equation of state [42] or [43] between p(t) and v(t),
with totally monotonous after-effect functions of «(u) or B(u). [42]ana [43]
are interdependent; both equations have the following characteristics:

1, They are linear and homogeneous; i,e,, when ;i(t) leads to ;i(t), and
when v,(t) leads to p,(t) then v;(t) + v,(t) leads to py(t) + pp(t). This
property is also called the superposition prirnciple,

2., p(t) depends solely on v(t) and on the earlier values of 7(t — u)
when u > 0: analogously, v(t) depends only on EXt) and on the earlier values
of p(t — u) when u> 0, i.e,, p(t) is determined only by the earlier history
but not by the future behavior of v(t) and vice versa, This property is also
called the after-effect principle,

3. All points of the time axis are equivalent; i,e., when v{t) leads
to p{t), then v(t + At) when At is randomly selected, will lead to p(t + &),

4, Limited p(t) corresponds to limited v(t), and vice versa,

These properties of systems having relaxation properties are so evident
that one might attempt not to cbtain them as inferences but to make them the
basis of a2 relaxation theory for small deviations from the state of equilib-
rium, As a matter of fact, this approach is much older than the thermodynamic
method and actually leads, despite the small number and the simple nature of
the prerequisites to far-reaching conclusions,

a7

First, it can be stated generally that a connection of the type of |42

or 53] exists between twe functions v(t) and p(t) that comply with the four
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abovementioned prereguisites provided that we shall allow non-proper functions
(e.g., of the type of a Dirac f-function) alsc as after-effect fuactions, Cf
course, the coefficient has by now largely besn divasted of its thermo-
dynamic significance; it indicates simply which instantaneous pressure jump
will occur when v is changed suddenly, from the direction of the equilibrium,
The index s will have to signify, however, that the process shall be adia-
b;tic. In the case of an isothermic process, [42] and [43] would also be

valid, but with another coefficient, viz,, with

Haa

lp; and |

[
CPIT g

respectively,

and with other after-effect functions of o(u) and B{u).
We do not wish to indicate all possible after-effect functions, but only
to point out the various possibilities by means of a few characteristic ex-

amples,

1. The thermodynamic theory of the relaxation phenomena provides

afuy =X 4;¢ur

i=1 ! [52]

w‘nen'V’Ai < = and LAjng_< 1, while Ai and 2; are otherwise selected at random,
as possible after-effect furnctions in Esz_ Instead of the sum, a Stieljes-
integral may be written, even more generally, in [52]_ Then, the after-ef-
fect function 3({u) has been determined unequivocally; it will have the form

of

[53]

whan Bi and o4 are also positive,

2. A more general group of after-effect functions has also the form of

(527 and [53], but with complex A 's and [;'s, or By's, that will have to
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satisfy certain other restrictions, It is necessary, among other things, that

. e
i 1

the real part f} of : ~ b is positive, It is suffiecient, in any
case, for A, ani T, to be positive, and for L A; to be larger than = and fer
z AiT;!to be larger than 1, We shall omit the formulation of the necessary
and sufficient conditions and shall 1imit ourselves to the case of two terms
of the sum in [52] with a positive coefficient A and with conjugated complex

! +iw,, due to the reality of @(u), Then, we shall find that

1
valuses of E
ld

alu) =24 e/t cos w, u

when 0< 24 ,<1, Tt follows from [£2] for harmonic processes with the

LN

BT S
5 i o
time dependency of e~ = that

ey -1 A -
A - .
Veuvigz ! .., . L
: - =i {w ) i {m— @g)
T,

P =

This, however, is a connection that is typical for systems with attenuated
oscillation in the case of periodic excitation; By is the rescnance frequency
and TB is reciproecal to the attermuation censtant, On account of the resonance
qualities of these systems, it is possible also to call them systems with
resonance relaxation,

Systems of this type are covered by the so-called function-theoretical
method in the linear after-effect theory (3), As examples thereof, we may
indicate the behavior of dielectric media upon excitation with frequencies in
the range of the visible light and of light with still shorter waves (optical
absorption and dispersion - here, the electric displacement density takes the
place of v, and the electric field density takes the place of p =), but also
finely distributed small gas bubbles in a Tiguid, These systenms, and similsar

ones, are truly twe.phase systems in which one phase is finely distributed
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within the other one, The thermodynamics of the irreversible processes may
be applied to it, provided we take into account the non-homogeneity of the
system in an explicit manner, But, a concept of these systems looking upon
them as genuinely homogeneous but with appropriate internal variables, is
not possible within the framework of the thermodynamic relaxation theory.
But, it seems that a thermodynamic relaxation theory may be developed by
means of an extension of the thermodynamics of the irreversible p'rocesses.
This theory will comprise also those systems that then will have to be con-
sidered macroscopically homogeneocus; it will provide resonance relaxation
and should enable us, due to its formalism, also to describe thermodynamical-
1y the behavior of the homogenecus dielectric matter for frequencies of visi-
ble 1light,

3. An additional group of after-effect functions contains non-proper

functions. The simplest example is the function

a(u)=a~5(u——T) (T >0,a<1)
when 5(x)=0 for z+0, _ fa(z) dz = 1.

It follows hence, from [42] that

pit) = (?l?)s 5 {a ()~ av(t — T)} .

G/,

By solving this equation for v(t), we shall find that

o

v (t) = (?E)s’s‘[f)@) +aept—T)+a?p(t—2T) +a®p(t —3T L J
and thereby,
Blu) = ad{u — T)+ a(u — 27) +a5(u — 37T) +. . .

Such a system has very curious properties, When the volume is changed
suddenly, it will first present an instantaneous change of pressure and then,

after the lapse of a time T, another sudden change of pressure; conversely,
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& sudden change of the pressure would be follewed by an instantansous change
of volume, and additional sudden changes of volume that wpuld decrsase by geo-
metrie progression, would follow after the lapses of the times of T, 2T, and
3T.

7. The problem of dielectric relaxation,

A simple example of the thermodynamic relaxation theory of a system
having an infinite mumber of internal variables is & distribution of dipoles
in a liquid. We shall assume, for the saks of simplicity, the case without
8 field, and presuppcse that, at the time of t = 0, a random deviation from
the squilibrium distribution is present, When/ 0. ¢) < ¢ v o . is the excess of the
dipoles {assumed “c be spherically symmetric), per unit of volume, the direc-
tion of which 1lies in the space angle o¢f:sindddde , over the equilibrium valus,
then we shall find for the adjustment of the equilibrium distribution, accord-

ing to Debye, that

(\
&
t
z,
5
-

sinpas) Tz,

2L on &
&b PR

when [ is a2 viscosity constant while k¥ is the Bolizmann-constant, This

: Tonl s P
zqaation agrees completely with agquation [ 28], with v = v.. This will be-

0%

coms even more evident when we introduce a normal variable El, §2, ... That
is done by the transformation from /(. ¢), to the §i's, in accordance with
the dsvelopmsnt of the spherical function (we assume here, for the sake of

simplicity, that the initial distribution does not depend on @, viz,:

oL
= Q i
f=2 &n Py {cos @).

n=1

It fellows then, on account of

i1 ;
G fmm— Pricos @) —nn—1P_(cond.-
cosm g M )//’ (=) Prlen=d,:20

by comparing the coefficients, that

-
s~ €&y

RS 1 E el
T (=l (n==1,2,.00)
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This system of ecquations agrees exactly with [25], with v = ¥y Con-

sequently, each normal variable gq has 2 pertinent relaxation time of

-
b

T o 1irr. The totsl of these relaxation times constitules the relaxa-
tion spectrum, Depending on the isothermic or adiabatic adjusiment of the
equilibrium, different valuses would have to be assigned te {. Experimentally,
the adiabatic case should always be present,

The fact that only the slowest relaxation process will present the ef-

fect of T = .+ in the electric moment is noteworthy, but clearly evident
bacause of the properties of spherical functisns; for, when we calculate the
moment, than the integral

!f;::‘ S0 dsin 0dd = ‘u i Sl g da o -; N

N -1 1

is decisive, This means that the relaxation of the electric momert is con-
ditioned solely by the relaxation of §1.
8. Linear kinetic theories as relaxation theories,

While the far-reaching consequences of the thermodynamic theory of the
relaxation phenomena are already becoming evident from the sxample discussed
ir: the prsceding Section, they will bs even mors proncunczd when we attemp?

- in a very successful mannsr - *to conceive of the basic kinstiz sguations sas
relaxation equations, As & matter of fact, the basic kinetle equations for
homogenecus systems with a distribution function of‘f have the form of

o=t (54

Examples are Bloch's integral equation of the metal-electron theory and
Boltzmarn's fundamental equation of the kinotic gas theery, L is an operator
and, in the kinetic gas thesry, particularly, the collision integrel, In the
case of smell deviations from the thermodynwnic squilibrium, 1.e,, from ithe
Fermi-distributicn in the case of rotal electrons, and from the Maxwell-
ituticn in gases, the operator L will be linear, in the first approximation,
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B! . , . .
Then, egquation [5&3 will again agree with v = Y5 and it will be possible cnce
more to introduce the nermal coordinates S,, 52, ...y by developing £ for the

A
sigen-functions of the equation L f.=—/.7, ; we shall then find - when [ = 25f:

- by insertion into (54 and by comparisen o
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The relaxation spectrum is defined by the reciprocal values of the xi's, In
addition, variations of external paramsters - e.g., of the volume - can be
covered - by way of analegy to (42) - by an additional linear term having
v(t) as a factor in [547], and we shall finally find A, at least as 2 princi-
rle - it is another cuestion whether this can alsoc be realized in practice -
& systematic procedure for ithe derivation of approximations for the funda-
mental equation as enlarced in this manner, It is largzely bhased on the as-
sumption that, in the case of variations of an external parameter, 8ll relaxa-
tion times that are small in relatlon to the time during which noticeable
changes occur, may be considered infinitely small in the first approximation,
Thzt means that we shall be able to write in the after-effect equation [#2}

which here, too, is valid, that

4 B4
fe il v lay e 8 ot 7
Y i
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== v (f)
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provided that the relaxation times Ts+1y Ta-s may be considered asmall in rela-
tion to the times during which the prescribed v(t) varies noticeably, Such
systems, in which the rapid relaxation processes as such do not play any part,
are called "aged" ["gealterte"] gy stams,

This concept of the kiretic theory as representing the most gerneral ex-
amples of the thermodynamiec theory cf the relaxation phenomsna causes this

theory and the kinatic theories of the relaxation phenomena to merge. An

ny
(04]




argument in favor of this concept is rendered possible by the full use of

the concept of the fletiously inhibited equilibrium zs introduced by Schottky:
this means that we shall be allowed, in our minds, to consider all tramsiticn
probabilities between variocus argument values of the distribution function

as inhibiting factors that are equal to zers, Then, however, we shall be

able to use the methods of thermodynamics and 1o calculate - for such a system
in & random state of non-equilibrium which, however, must not be too far re-
moved from the equilibirum, the thermodynamic functions as dependent on the
total of the values of the distribution function, The justifica*ion of this
method may alse be found in the fact that the cscillatiens that have beer cal-
culated on its basis by the thermodynamic oscillation theory, agree with the
oseilla’inue 25 calculated according to statistical mechanics,

9, Final remarks.

The formalism and the general laws of the thermodynamic relaxation theory
may bte considered sufficiently clarified, Two kinds of values enter into this
theory. The values of the first type are the thermedynamic functions for the
fictitiously inhibited equilibrium; ‘hey nay be obtained from statisticael
rmechanics and may be calculated for many examples, The values of the second

type, the phenomenological coefficients Si in {223, the transition protabili-

k
ties between various argument valves of the distribution function in [5&], are
of an incomparably more complicated nature and can be obtained only on the

basis of difficult kinetic considerations that are largely of 2 gquantum-mechani-
cal nature, Despite many beginnings, almost everything still remains to be

done in this field - no matter which type of relaxation phenomena is under
discussion,

We were able only to hint at the possibility of a thermodynamic resonance

relaxation. We hove that we shall be able to return to it at znother oceccasion,
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The ssme hope applies to the treatment of the fundamental kinetiec equaticns
in the sense of the relaxation theery: it weuld be interestinz te find the
ralaxation spectra at least for one example, perhaps for a gas model with
rigid and smooth spheres,

It is possible to develop - 2s a counterpart of the relaxation of pres-
sure and volume as discussed above, and largely parallel to it - a theory
of the elastic relaxation in isotropic or anisotropic bodies, and a theory
of the dielectric and magnetic relaxsticn in anisotropic bodies, We shall
soon discuss elsewhere the elastic bodies with thrust relaxation and pressure
relaxation,

It rmast finally be pointed out that transfer phenomena a2lsc play a part
in many relexation phenomena, They have been examined thoroughly inzsmuch as

the acoustic relaxation is concerned (6).
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Discussion
Moderator: S, Fluegge (Marburg/Lahn)
J. Meixner (Aachen): By way of conclusion of my report, I want to pose
a few questions and touch upon a few problems the tresinent of which, in my
opinion, could be of intserest for a further development of the theory as well
as for the interpretation of experimental findings,

1. “What simple examples illustrating the ralaxation theory can be found?
3 P 3




2, Are there any systems having 2 so-called "dead time" such zs has been
discussed as the third exsmple of the 6th Section of the Report,

3. Wwhich data can be obtained, maximally, from a measured dispersion and
absorption curve, in regard to the relaxation spectrum, provided that the
value of the measuring errors can be estimated? This is a purely mathematical
problem. Important contributions to this problem have already been amde by
Stavermann and Schwarzl; cf,, in this respect, Mr, Staverman's paper,

L, The pertinent retardation spectra should be calculated for as many
given relaxation spectra as possible, A first compilation of this type may
already be found in B, Gross, Mzthematical Structure of Theories of Linear
Viscoelasticity (Paris 19573),

5. The relaxation properties - particularly the relaxation spectra -
should be calculated for as many models as possible,

S. Fluegge (Marburg): I suggest that the following three complexes of
problems be treated successively in the discussion:

First: To which extent are the Sik's entropies, and to what extent are
they not entroples? The second gquestion would be: te what extent can your
thermodynamic theory be applied to practical examples? Finally, the guestions
posed at the end of the Report, e.g., the resonance bshavior, the signifi-
cance of the concept of "dead time", will remain as the third question, We
should, perhaps, adjourn mathematicazl questions until we shall discuss the
paper by Gross,

E. B. G, Casimir (Eindhoven): When you discuss the relaxation phenomena
with several variatles, you introduce the values eik‘ In that way, the form-
las will have a narticuliarly simple form, since the matrix as well as ths

matrix of the derivations d Ak/d§l has been diagonalized, This is based on

1




the fact that it is a symmetrical matrix, due to the Onsager relatiocns, It
is true, however, that the eik's will not have to be symmetriecal, e.,g., for
a system within 2 magnetie fisld, It will then be irue only that eik will
have to become eki when the magnetic field is reversed, For that reason,
the eik-matrix cannot be diasgonalized, and relaxation phenomena may result,
accordingly, that are much more complicated and that will not fit into the
general formalism,

J. Meixner (Aachen): Undoubtedly, the situation is more complicated in
this case, But I believe that here, too, certain general statements can be
achieved,

S. Fluegge {Marburg): To what extent can such a case occur, are there
any additional examples?

H. B, G, Casimir (Eindhoven): I believe that, outside of magnetic
fields, this case occurs only in systems that are in a state of rotation,
e.g., in a system within 2 centrifuge, but this is already very artifieial,
But, actually, it may occur very well in a magnetic field,

J. Meixner {Aachen): In this respect, we could alsc say that the €S
are, as a matter of course, funciions of state, But, in ths enviromment of
an equilibrium - and, in the linear theory, we are alwsys withirn the environs
of an equilibrium -, they depend solely on T,p and on the constant parameters
of the system, As Onsager and Casimir have demonstrated, symmetry relations

apply also to these €, 's; there relations are, in these cases, particularly

ik
simple and allow of simple conclusions when there is no magnetic field pre-
sent, They will become more complicated in the case of a magnetic field,

S. Fluegge {(Marburg): Zvidently, vou presuppose - in view of the thermo-

dynamic structure of your theory - homogensous sysiems whenever you lalk about
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functions of state, To what extent is this supposition actually fulfilled
PP %7

I czn imagire that you will have loczl hezting
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or similar phenomena during the deformation so that these suppositions will
be no longer valid?

J. Meixner (Aachen): In this respect, we can say the following: It is
always true for the case of acoustic relaxation that we have heat conduction,
simply because heating and cooling alternate as to time and place, More-
over, thrust deformations will occur in the acoustic wave, and the viscosity
will also play a part, But, the considerations may bs enlarzed by including
the iransport phenomena explicitly in the equations,

S. Fluegge (Marburg): This means that the general frame will remain pre-
served, but you will obtain additional terms, It does not mean, however,
that you will have additional non-linear terms instead of linear relations?
Otherwise, the concept of relaxation time would, indeed, be also undermined!

J. Meixner (Aachen): No. I have intentionally restricted myself here
to homogeneous systems so as not to complicate needlessly the presentation of
my paper. Moreover, I would like to mention that the irrevsrsible transfer
phenomena can be covered by the same formslism which I have outlined for the
internal transformations, It will only be necessary, to that end, to divide
the system into sufficiently small - but not tooc small - volume elements and
to introduce, besides the internal variables ¢f the individual volume elements,
perhaps, their temperature as an additional internal variable, - By the way,
H, EiSenstein*) has discussed the effect of heal conduction on the paramagnetic
relaxation, a short time ago.

E, Hueckel (Marburg/Lahn): When we do no® have any speciasl problem, then
we certainly shail not be able to say anything as to the deviations that will

*) H. Eisenstein, Phys, Rev. 84, 548 (1951),
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have to be considered as being tooc small for a certain case? T mean that we
shall certainly not be able to indicste the range of validity of the linear
equation a priori?

J. Meiymer (Aachen): No, that is a question 2ll by itself, Ang, e.g.,
in the case of chemical reactions, the aliowable deviations from the equilib-
rium are relatively small for the linearized theory,

E, Hueckel (Marburg/Lahn): And in the case of chemical reactions that
take place rapidly?

J. Meixmer {Aachen): The rsactions may have any velocity whatsocever,

E, Hueckel (Marburg/Lain): I mean reactions, for which the dsviaticns

are large,

J. Meixner (Aachen): Then, linearity is not guaranteed any longer, It

is possible, of course, to investigate experimentally in each case, to what
extent the linear theory will apply, and it will then become apparent that
their range of validity frequently is very large. That applies, e,g., to the
relaxation in high polymers, but particularly to the transfer phenomena, E.g,
the linear Fourier-equation applies %o the heat conductance in zases, under
normal conditions, at least up %o temperaturs gradients of 10,000 degrses per
cm,

W, Heywang (Karlsruhe): I would like to pose & guestion regarding the
failure of the thermodynamic theory in the case of oscillation problems, Since
it contains only differential equations of the first order, experimental re-
sults with oscillations are not covered, It is true that, within a modest
framework, ~ i.e., by the simple addition c¢. the corresponding terms of inertia
- the theory may be enlarged, but I do not krnow to whizh axtent w2 shall then

depend on the assumed model, How shall we be able to inclucde and understand




such a term of inertia within the framework of a consistent thermodynamic
theory?

J. Meixner (Aachen): The idsa of introducing terms of inertia is rather
obvious, since the resonance behavior of the mechanical mecdels of the relaxa-
tion with elastic springs and “dashpots'" is brought about by mounting masses
not only on the end of the model but slso within the model itself, At this
moment, I am not yet able to say how the free energy for z thermodynamic
system with an analogous behavior is to be understood, But, it seems to me
that it is already possible to say a few things about the formalism. The

free energy will still contain the derivaiions €.; of the internsl variables
according to the time, 2nd the affinities will have to be defined not by the
derivations of the frse energy accordinz to the internal wvariables §i, at

by the variation derivations
af R

A= e
: E;S, Tt g:.

It will then be possible - in a manner similar to Hamilton's mechaniecs - to
assign canonically conjugated varlables ¢/¢: to the internzl variables éi'

W. Heyweng {Karlsruhe): To be more specific, I was concernsd with & 4di-
electric {ferro-electric) problem within a frequency range, in which a purely
electrodynamiz treatment that would be free of thermodynamics, still appeared
to be unjustified, but in which, due to the special structure of ths body
under investigation, internal inductivities could occur within smaller ranges,
I attempted, therefore, tc fit the terms of inertia that deseribed the in-
duetivity, into the thermodynamics,

J. Mesixner (Aachen): I believe - and this is, at the moment, no more

than a profession of faith - that it will be possible, in the end, to

g
the thermodyanamics of irrevorsible processes to such an extent that it will




R, A, SaeVv {L’Vn““sdA}: I havs werked lately on this prediem - it is
true, nel from the thermodynamic point of view but from the statistic-kinetic
one. It appears that even in the case of the pure relaxation, when no oscil-
lation 1s present, terms of inertia will have to be taken into account in
certain cases, When we start - in doing so - from the Hamilton-function of
the totlal system, then the %i’s will bte certain purposefully selected coordi-
rnates in the space of configuration which, together with other coordinates
and with the caronically conjugated impulses enter iric Licuville's equatiern,
which describes the probsbility distrituiion in the phase space., Then, relaxa-

tion will mear transmission of energy from the partial system of the (§* fg}'s
unto the remaining coordinates, But, the primary processes for such energy
transmissions are not changes of location, i,e., variations of the &'s, but
cellisions, i.e., variations of the é’s, and inasmuch as these are concerned,

the inertia plays a principal part, TFor that reason, relaxation of the 5's

will first reguire 2 rew distribution of the velocities, the adjusimarnt ti-2

of whier =£hell Ye desizrated by T, The common relaxation itheories taks 271
distributions of the £'s, and not of the é's into account, or they consider
altogether only the statistical mean values of the £'s, and for that reason,
they can be used only in the case of time lapses of t >>T°* or frequencies of

w << 1/ *, It results, particularly, from a proper consideration of the

velocities that, when a field that has been kept constant for a long time is

cul off suddenly, the tanget of the chronological curve of the course of all
£'s will have to be horizontal 2zt the first moment £ <<T* £ - {, and that
it will not fall as it is shown customarily, In an anslogous way, it is alsc
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true that, for alternating fields, Debye's Function (I —icrt fails in the case
of frequencies, in which we have wz*~ 1 ; the failure consists in its predicat-
ing exaggerated losses; this has already pointed out by F, H, Mueller, among
cthers‘

(Subsequently added: By way of summarizing my comments, I want to point
out once more that the velocities g will, therefore, have to be considered
not only in the case of oscillation phenomena, but also in a consistent cal-
culation of the pure relaxation, I assume that this means that, in a thermo-
dynamic treatment, the kinetlc energy connected therewith will have to be
taken into account explicitly).

F, 3, Mueller (Marburg/Lahn): Perhaps, we should recall here, first of
all Rocard's**> calculations, In Debye's classical paper cn dipole dispersion
(1913) just as in Einstein's calculsations for the diffusion, the acceleration
periocd for the movement of the dipcles has been neglected in favor of the
time of the rotation in the field at a2 constant velocity, according to Stoke's
equation of friction, The frequency dependence for ¢’ will then correspond
no longer to the real part of the Debye function, but will read:

R R Gap s
e w = l'_:’”zf‘,_,‘ R .
— =T 1 - (J(u’, vl T)‘:

Rocard complements the differential egquation for the distribution function f?

by a term of inertia, viz,,

d* §
de

The frequency curve of ef(w) is, therefore, somewhat changed in relation to

the Debye function -« not exactly, but into the direction of the transition to

the resonance case, At the moment, I do not know whether this is du

(4]

solely
*) Debye, P., Phys. Z. 35, 101 (19734); F, H. Mueller, Ergebnisse der exakten
Naturwissenschaften 17, 181 (1938).

**) Rocard, M. J., J. Physique 4, 27 (1953),
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to certain simplifications that are necessary to solve the differentlal equa-
tion foz~f, viz,, that the resonance case does not appear exactly, It has
not yet teen possible to confirm Rocard's theory, ©Even losses in dipole-
free fluids such &s benzene {V. D. H, Whiffen, Farad, Trans, 46, 12k, 1950)
require eanother explanation, in addition, even though one has attempted to
use Rocard's calculations for that purpose,

B. Gross (Rio de Janeiro): A general after-effect theory that covers
sttemuated systems that are capable of oscillation, can be carried through,
Only, such & theory is generally not ealled an after-effect theory arny longer,
E.g., the system theory of electric circuits can be reduced to a form that
thoroughly agrees with the usual afier-effect theory. I propose io meke a
few additioral comments on this topic in my paper,

S. Fluegge {Marburg/Lahn): Mr, Sack, after all we have essentially to
do with a generalization of Meixner's equation, in which you use an additional
é, Cn the other hand, you will receive a very special statement concerning
the horizontal tangent. Is this not, once more, a special model? In your
case, it will probably always turn out that way, if you use the additional
é's. May I, Mr, Meixrer, pcse the additisnal question: this theory is here
so much more specisl than the general formulation of the after-effect theory,
and it particularly seems to result in the after-effect theory's always being
monotonous?

J, Meixner (Aachen): Not only monotornous btut totally-monotonous, i.e.,
the after-effect functions @{u), A(u) and a1l their derivations for all u's
will differ from zero; more precisely, the first derivation will be negative,

the second one will be positive, the third ons will again be negative, etc,,
& ¥ £

or also, that a{u), R{u) ... may be represented as sums or integrals over
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exponential functions 2(2)e™ %, with positive «{A) and ) 's,

S, Fluegge {(Marburg/Lahn): Will this restriction, possibly, be nullified
by Sack's objection? I.e., is it possible to describe, in addition, other pro-
cessaes, when we use the é‘s in addition?

J. Meixner (Aazchen): Yes, in that case, the after-effect functions will,
of course, be different, But, when we exclude the small time interval during
which the general theory happens to fail, without the £ 'S, then it will be a
matter of course thet equally totally-monotonous functions will result, within
the framework of the thermodynamic relaxation theory, I am of the cpinion
that, when we rake also use of Szck's theory, we shall, of coursze, ob*ain
general after-effect functisns that, however, will have to contain the totally-
menotonous functions as a borderline case,

R. A, Sack (Liverpcol): But necessarily only when the adjustment times
of the Boltzmann distribution within the velocity space are mich smaller than
in the configuration spacs.

J. Meixner (Aachen): That will have to be presupposed,

H. B. G. Casimir (Eindhoven): In this connection, I may &dd that such
a condition, viz,, that one can select sz time that is long in relation to
the adjustment of the Boltzmann distribution and short in comparison to the
time required, te achieve once more the state of equilibrium, that this is
always an essentisl condition of such considerations, E.g., I have stressed
in my derivation of the Onsager-equations that it happens to be possible only
when such a time interval can be found, i,e,, therefore, when this starting
time is very short in relation ts the relaxstior times, On the cther hand,

I would like to ask, and this seeme %o me somewhat doubiful, whether it is

possible outside t.e ususl area, i,e,, when the impulse adjustment time is
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not sufficiently short, reelly to have confidence in a purely formal theory.
I have the feeling that, in that case, the kinetic processes will become so
complicated that i1 appears te be somewhat doubtful whether a gensral formal-
igm will sti1l do justice to this case, But, I have not seen Mr. Sack's
papers, and it can be possible that it still can be done to & considerable
extent, I just happened tc have the impression that the thermodynamics just
work out so beautifully, inclusive of the irreversible thermocdynamics, be-
cause one just limits himself to the right area, It is very difficult to
cover the phenomena by a still more general formaiism,

J. Meixner (Aachen): But I believs that Mr, Sack mows betier what's
what, in this field., I do believe, however, ithat there will be a wider area
within which we shall get along with this generalizatlon, in which, there-
fore, the £'s are being used in addition, and we shall simply have to look
for that area.

F, H. Mueller (Marburg/Lahn): I would like to address another gquestion
to ¥r, Meixner, that is connected therewith: In an earlier paper*), he ex-
plained that, for a system in which transformations between the various com-
ponenis occur - be they of & chemical nature or belwaen the mumbers of elec-
trons cceupying the shell - any one of these concentrations is able to pass
through "oscillating" states, Accordingly, the total effect will always dis-
appear in a totally-monotonous manner, but not every individual ccomponent or
number of electrons occupying the shell unconditionally for each representa-
tion (oscillating will have to be considered here to be not genuinely oscil-
lating),

J, Meixner (Aachen): Yes, tha* i3 semething entirely different from the

resonance relaxation, Perhaps, I may say the following in this cormection:

*

p

J. Meixner, Z, MNaturforschg. SA, 5%4 (1949),
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The choice of the internsl varisbles is not unegquiveocal: for, when I have
selected, e.¢., the § 's as internal variables, then I may jJust as well take
any indspendent linsar combination of the internal varisbles as 2 new variable,
The internal wvariables may be the numbers of occupying elecirons, they may be
the running reaction variables, but they may alsoc be any combinations of the
internal variables which I have just cited as sxamples, And it becomes evi-
dent that certain combinations which I call normal variables, in analogy to
the normal coordinates of an osclillating mechanicsl system, that such internal
variables altogether will adjust expenentislly to the equilibrium value, A4s
te 2 linear combination of the normel varisbles -~ the internal variables
zdapted to the problem in a natural marner, such as occupstion fizures, ete.,
are generally non-trivial combinations of the normal variables - it may happen
that it adjusts to the equilibrium value in an oseillating manner., The word
"oscillating" is here not strictly correct, because the mmber of the zero
passages is finite; actually, it is - under adiabatic conditions - smaller

by at least one, than the number of the independent internal variables,

S, Fluegge (Marburg/Lahn): That comes actually about in conssquence of
the fact that the negative sipgn is dominant in your linear combinations,

J. Meixner (Aachen): I.e., if we had §; = exp., (A1), and &, = exp.,
(-Aot), and if I now form a new internal variable g, - §,, then a zero passage
nay occur for it, In this sense, a chemical equilibrium will not have to occur
in 2 certain direction, but it may go beyond the goal and reach the equilibrium
from behind; that is possible a finite number of times,

S. Fluegge (Marburg/Lahn): Could that contribute to the understanding
of Lieseganz's rings?

J. Meixner {Aachen): That, I doa't know; I have nevcr given it any

thought,
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M. Magat (Paris): I wanted to ask Mr, Meixmer up to which frequency range
ths thermodynamic theory of the irreversible processes may be applied, I am
interested in the converse case, in which the oscillations are excited by the
electrons, while the “translation energies and the rotation ensergies are limp-
ing behind, e.g., in the case of electric dischsrges (plasma oscillations, or
similar phenomsna),

J. Meixner (Aachen): Here, difficulties exist inasmuch as the temperature
within the plasma is not unequivocally defined, It is necessary to differenti-
ate between ion temperature, gaes temperature, and electron itemperaturs, and
a2s far zs I know, the ion temperature is not defined even by 2n unobjectlonatle
Maxwell distribution.

M. Magat (Paris): That is axactly the problem., I shzll formulate my
question as follows: Let us assume that I know the excitation functicns, the
numbsr of the electrons, and their velocities, To express it differently: I
know the "temperature'" of the electron excitation and of the oseillations,

This temperature is transferred, with a certain relaxation time, unto the
rotation and translation movement of the atoms and ions, by collisions, W1l
it then be possible, by means of your theory, ‘o make any statements relaling
‘o the translaiion and rotation temperatures (or temperature since, as a
matter of fact, both of them equate easily)?

J. Meixner (Aachen): I am unable to give you a definite reply to this
question, Jjust because of the aforementioned difficulties; it would have to
be tried,

P, Brauer {Mosbach and Karlsruhe): I wanted to ask Mr, Meixner whether
- if T have understood correctly - every after-effect can be reduced tc 2 sum

of e-functions As a matier of fact, the reduction to e-function does not
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provide any exact statement as to the elementary preocess, I am thinking just
now, e.2., of an optical example, in which the gi‘s duyring the slaciron re-
actions are sither the numbers of electrons occupying the shell or concentra-
tions., It will then occur very frequently that resctions of a higher order
will also be involved, Now then to what extent will it be possible, first,
mathematically to replace such a fading function, in the presence of elementary
reactions of a2 higher order, by a2 sum of e~functions, and to which extent

will it be possible, if such a mathematical representation should be under-
taken successfully, to establish a connection between the two "Fourler-systems"?

J. Meixner (Azchern): Betwesn which iwc Fourier gystems?

B. Brzuer (Mosbach and Karlsruhe): BRBetween the decomposition into e-
functions and the decomposition into functions that are physically reasonable
in relation to the process, Let us assume, e,g., that the §i-concentrations
are present in a system with reactions of a higher order, and that one has re-
laxation phenomena, 1l.e,, adjustment processes which also take place as re-
actions of a higher order. To what extent can & transition be made, in this
case, between 2 linear theory that consists of a random number of artificial
mathematical components, and the physically reasonable theory, which we shall
then relate to the system of the physically well-known elementary processes
that are not of the first order, To what extent is this possible, and what
does it look like for simple cases?

S. Fluegge (Marburg/Lahn): Is this a physical or a mathematical question?

P. Brauer (Mosbach and Xarlsruhe): Both,

J. Meixner {Aachen): I do not know to what ex‘ent I have undesrstesd your

-

cuestisn correctly, but when I have 2 reaction of
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tzkes place near the stzte of equilibrium, then the theory will apply. 'hen




we are not near the equilibrium then the theory will, of ccurse, not be valid,
find 2 random fading function, that reaches from a very large distance irte
the equilibrins, and when this function is reduced to e-~functions, which - as
a2 matter of principle - can be done mathematically, then I do not believe that
any physical statement will be contained therein,

P. Brauer (Mosbach and Karlsruhe): I wanted to ask here a special ques-
tion: when we are very close to an equilibrium, in the case of processes or
elemenlary processes that are non-linear, as is, e,g., the concentration de-
penderce in chemical reactions of 2 higher order, then certain funciional con-
rections will result, e.g., *the velocity function, which will remain non-linear
in a strict mathematical sense, even when we approach the eguilibrium in a
random manner,

J, Meixmer (Aachen): Yes.

P. Brauer (Mosbach and Karlsruhe): Tnasmuch as this case is concerned,

I should be interested what else will then be predictable, possibly on the
tasis of the concentration dependence of the velocity function?

J. Meixmer (Aachen): If you do not happen to havs pathological cases,
then the linear theory will always apply within the environs of the equilib-
rium, and it will then make no difference whether the reaction is one of the
first order or of a higher order, in the meaning of the chemical terminology,
whether it is mono-molecular or bi-molecular, ete, Mathematically, it will,
of course, always te possible to construct pathological cases, but I can
imzgine & failure of the linear theory in the envirorrent of the equilibrium

only, when elther, in the development of the free energy for the £ £, — §i0,
2

the terms of the second srder are lacking, and when, in accordanrs therswith,



the affinities ere independent of the gi ~ £, In the first approximation,
or when the phencmenclogical coefficients disappear in the first approximation,
i.e., when the §,'s are linesr functions of nigher potencies than the first
ocns and of produets of the affinities, But, I de not know whether there
are any sach cases,

S. Fluegge (Marburg/Lahn): How is the situation in the case of chemical
reactions, in which you will, indeed, have noticeable changes in the concen-

tration? How does & linearization lock there?

J. Meismer (Aachen}: This is, of course, orly possible within the environ-

ment of the equilibrium, with the restriciions thzt I have Just mentioned.
4. J. Staverman (Delft): Vhen M¥r. Brauer ihinks that chemical reactions
of & higher order will lead to non-linear processes, even when they take place

near the equilibrium, then I believe that there exists a misunderstanding,

It is true that, in that case, the reaction velocity is equal to the product
of several concentrations, but when we write the concentrations - in the en-
virons of the equilibrium - 2s & sum of equilibrium concertrations and 2 small
additional t then the product will nevertheless be - provided that we dis-
regard the product of the zdditicnal terms - a sum of terms that are linear

in relation to the additional terms.

G. Laukien (Stuttgart): The paper has ended with & question: Vhere will
complicated forms of the curve cccur? I want to point out that this is true
of miclear-magneton relaxations, as soon as they are examined by impul se methods,
It will probably be more appropriste to present more ceitailed comments followe

ing Mr. Krueger's paper,

o
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negge (Marburg/Lahn): What sbout Mr, Meixrer's cuestiorn relating
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. Meixmer (Azchen): T have heard this cateh-word only cnce but no de-
tails beyond it, But, I would be very much interestsd to hear examrles, Onece,
when I talked %o Vr, Feldtkeller, he gave 2z double-conductor as an example,
When we apply 2 sion on the end of a double-conductor, then it will return
from the other end only after a certain lapse of time; this phenomenon repezts
itself at equal time intervals,

R, Feldtkeller (Stuttgart): Of course, that is not a true relaxation
phencmernon,

J. Meixner (Aachen): Put, it is nevertheless an example of the problem
of "dead time"; for, this problem belongs, as & circuit problem, inte the field
of the after-eifect theory and is 2 linear phenomencn,

E. Vogt (Marburg/Lalm): I want to ask whether the ferro-magretic reso-
narice that occcurs at very high frequencies, when thezno is determined by the
Larmor frequency and when the form of the curve of resonance depends, as far
as I know, on the energy transmission, may be considered an example for the
resonance relaxation as described by ¥r. Meixner, In that case, the curve is
measured not by the variation of the frequency ut by the variation of the
magnetic field, Here, we find ales & relaxation time, and I want e ask
whether this is an example? (This would be an example that would be analogous
to the case of muclear resonance, as discussed in Krueger's paper).

J. Meixner (Aachen): At the moment, I am unable to tell you this,

H. Kneser (Stuttgart): What does an absorption curve or attenuation
curve as a function of the frequency for the case of the “"resonance relaxa-
tion" look like? Certainly, essentially like an ordinary resonance curve
with coneiderable ztiermation?

J. Meivmer {(Aachen): es.




F. H. Mueller {(Marburg/Lzhn): (subsequently): In the case of consider-
eble attermation, the difference from the case of a2 normal dispersion is, as
a matter of fact, very smsll, VWher we plot the reduced zitenuation against

hJ¢mO:1uw.1£;:ma = frequency of the maximmum)
then it will become epparent that the curves of the resonance case are steeper
than the ones of the case of a single relaxatlion time, according to the Debye-
function (Fig, 1). As the attenuation decreases, the curves becomes more and

more pointed and higher and higher, Analogously, the monotonous dovmward

curve of the real part will become a serpentine line, such as it is known as

typical for the curve of the refractive iIndex over & resonance point, In the
case of indistinet resonance around z point of gravity of an eigen-frequency,

the resonance character can be recognized with certainty only by the real part;
the bell-shaped curve of the atitemasation may be just as flat or flatter than
the Debye~function indicates, But, a steeper curve for anomalous absorption

would alse have to occur in Sack's case,
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There is, by the way, an essential difference from the rescnance case
and from anomalous dispersion inasmech as the behavior of the temperature is
concerned, even though the cutline drawn by Frcehlich*> (Fig. 2} represents
an ideal borderline case, In high polymers, where the dispersion is certain-
1y always anomelous, the increase as well as the decrease of the maximum
occurs when the frequency increases, An explanation is net yet available,

In the dielectric case, suggestions of resonance in dipole dispersion have
always turned out to be simulated effects of the apparatus, up to this iime,
(Inductivities of the condenser feed lines had not been taken into considera-
tion, ete, ).

E, Jenckel : In formula [10! on page & of your paper, you write
a theorem of inequalities and you alsoc expressly admit the equality, Do I
understand this correctly, viz., that relaxation spectrum and retardation
spectrum will become identical in the case of equality? Under what conditions
are the two spectra equal? Kuhn has used certain experimental findings and
has derived a distribution of such a type that relaxation phenomena and re-
tardation phenomena will become equzl. In my opinion, that would lead here
to the result that the signs of equality will apply te your theorem, This re-
lation is by no means always valid, but still applies to a sufficient number
of cases, very roughly to some 50% of them. It would, therefore, be possible
to use the case of equality as a base that occurs sufficiently often, and to
consider the other cases by asking the question: what does the inequality
mean, and what shall I have to add to the formulae so as to obtain the in-

eguality?

*)
J R

Theory of Dielecirics {Oxford 1943}, page 103,



J. Meixner {Aachen): TIn this connection, we shall have to say that the
distribution of the relaxation times and retardation *imes for a2 contimuous
relaxaticn specirum in & finite interval of o<1z vz will 2lways be identi-
cal, with the exception of the isclsied retardation time which will, then,
occur of necessity in the retardation spectrum, But, it will be necessary

to indicate, in regard to each relaxation time or to sach retardation time,

how strong its effect is, i,e,, which are the coefficients of the development
of the pertinent after-effect function for exponential functiens, 1In this

more complete sense, equality of relaxation and retardation would mean eguality
of the afier-effect functicns, and this exists, if an afiereffect exists at

all, enly ther - and even then, only approximately - whern the afiereffect is

sufficiently weak, 3ut, Mr, Gross will be able tc express this vsry much

R, Gross (Rio de Janeiro): Relaxation spectrum and retardation spectrum
will never be strictly identical, mathematically (even when we spply Kuhn's

equation), But they will become more and more similar as the relzaxing part

[a 8

screasss in relation to the purely eleastic cne,

F, Schwarel (Delft): I may be atle to answer Mr, Jenckels question. In
reality, it is never possible to determine the spectra experimentally wit
sufficient precision, but oniy certain approximations, Consequently, even
wnen the strict relaxation spectrum is different from the strict retardation
spectrum, it may occur, nevertheless, that the approximations for the two
spectra in the first order will be equal, In this case, the equality has
less of a physical significance, but is simply an expression of the fact that
it is not possible to determine the specltra experimentally with sufficient

recizion,

g)
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E. Jenckel {Aachen): That is possible, but there &xist, experimentsXly,
2 considerable mumber of cases in vwhich the spectra are clearly different,

R, Feldtkeller {stuttgart): It is possible to say in a very gereral way
that the relaxation specirum and the retardation spectrum are equal, to &
reasonable degree of precision, when the unrelaxed elongation and the relaxed
elongation differ but slightly.

E. Jenckel (Aachen): That agrees also quite thoroughly with the experi-

mental experience,
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